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ABSTRACT

We apply a density-dependent variant of Weyl gravity, combined with Einstein-Hilbert gravity, to

galaxy clusters. After fitting two global parameters, the gravity profiles calculated from the known

baryonic matter in Abell 1689, Abell 1835, and Abell 2029 are compatible with the surface mass

density profiles obtained from gravitational lensing and largely compatible with the acceleration profiles

obtained from the hydrostatic equilibrium of the intergalactic gas, thus explaining the differences

between the results of both methods. The shape of the two-dimensional κ map in 1E 0657−558 (Bullet

Cluster) is reproduced qualitatively.
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1. INTRODUCTION

General relativity is an extremely well-tested theory

which explains all phenomena related to gravity up to

the distances between the stars in a galaxy (Will 2014).

Measurements of gravity over galactic and extra-galactic

scales, however, indicate sources of gravity which can-

not be attributed to matter visible via electromagnetic

waves, commonly called baryonic matter. This mass dis-

crepancy leads to the conclusion that there is additional

invisible matter, dark matter (Garrett & Duda 2011).

Alternative explanations postulate modifications of the

laws of gravity (Famaey & McGaugh 2012).

Both classes of explanations successfully explain some

observations, for instance the rotation curves of galax-

ies, but have problems explaining others. In particular,

modified gravity theories have problems explaining the

gravitational lensing in galaxy clusters (Dutta & Islam

2018). On the other hand, all attempts to detect dark

matter by other means than their gravity have produced

negative results so far (Bertone et al. 2005).

An example of particular interest is the galaxy cluster

1E 0657−558, also called the Bullet Cluster. It consists

of two colliding subclusters. Its baryonic matter compo-
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nents are the galaxies themselves plus intergalactic gas,

whose mass is about 10 times the mass of the galaxies.

The mass profile measured via gravitational lensing does

not follow the profile of the baryonic mass, dominated

by the gas clouds. Instead it widely follows the profile

of the galaxies. This can be explained by unseen dark

matter located close to the galaxies, but it is hard to

explain by modified gravity, which is expected to fol-

low the profile of the baryonic mass (Clowe et al. 2006a;

Paraficz et al. 2016).

In the same galaxy cluster, however, the relative ve-

locity of the two colliding subclusters is too high to be

explained by theories involving dark matter, but it can

be explained by theories of modified gravity (Angus &

McGaugh 2007). In this sense, 1E 0657−558 provides di-

rect evidence both for and against the existence of dark

matter at the same time.

Another direct evidence for the existence of non-

Newtonian gravity on stellar scales has been found in

wide binary systems (Chae 2023).

This paper focuses on one particular theory of modi-

fied gravity, Weyl gravity (Mannheim & Kazanas 1989;

Mannheim 2006; Dutta & Islam 2018), in a slightly

modified form, where the gravity of a mass distribution

also depends on its density, and in combination with

Einstein-Hilbert gravity. We show that the Weyl gravity

of the baryonic matter can explain the gravity profiles

measured in the galaxy clusters Abell 1689, Abell 1835,
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Abell 2029, and 1E 0657−558. This makes Weyl gravity

an interesting candidate for an explanation of the nature

of dark matter.

2. WEYL GRAVITY

Weyl gravity replaces the Einstein-Hilbert action

SEH = − c4

16πG

∫
(R− 2Λ)

√
−g d4x (1)

by the Weyl action

SW = −αg

∫
CλµνκC

λµνκ√−g d4x, (2)

where

Cλµνκ = Rλµνκ

− 1
2 (gλνRµκ − gλκRµν − gµνRλκ + gµκRλν)

+ 1
6R

α
α(gλνgµκ − gλκgµν) (3)

is the Weyl curvature tensor and αg is a dimensionless

constant. One motivation for this arises from quantum

field theory, where SW, in contrast to SEH, is renormal-

izable. Another motivation is a possible explanation for

dark matter via a modified law of gravity (Mannheim &

Kazanas 1989; Mannheim 2006).

The field equations emerging from SW are different

from the Einstein equations of gravity. Nevertheless

both sets of equations allow for the Schwarzschild solu-

tion and thus the Newtonian limit, making both theories

of gravity equivalent up to stellar gravity and distances.

In Weyl gravity, the classical gravitational potential

of a spherically symmetric source reads

VW(r) = −c2β

r
+ 1

2c
2γ r + 1

2c
2γ0 r − κc2r2, (4)

where β and γ relate to the mass M of the source via

β = β∗
M

M⊙
, γ = γ∗

M

M⊙
, (5)

and M⊙ ≈ 1.99×1030 kg is the mass of the Sun.

In Weyl gravity, the constant

β∗ ≈ 1.48×103 m (6)

matches half the Schwarzschild radius of the Sun. Then

the first term of the potential (4) reproduces the New-

tonian law of gravity. The second term features a new

universal constant

γ∗ ≈ 5.42×10−39 m−1 (7)

and describes a gravitational force which does not de-

pend on the distance to its source.

The “global” terms involving γ0 and κ result from

masses outside the spherical mass distribution. On

galactic scales, these constants have been determined

(O’Brien & Mannheim 2012) as

γ0 ≈ 3.06×10−28 m−1, (8)

κ ≈ 9.54×10−50 m−2. (9)

Weyl gravity modifies the law of gravity in a way

which has negligible influence in the solar system, but

has been shown to explain the rotation curves of galax-

ies (O’Brien & Mannheim 2012) and other phenomena

on galactic scales (Dutta & Islam 2018). On extra-

galactic scales, however, the gravity generated this way

by the baryonic matter is much bigger than the gravity

observed indirectly via the hydrostatic equilibrium of

the intergalactic gas (Horne 2006) and via gravitational

lensing (Dutta & Islam 2018).

The derivation of the potential (4) from the Weyl ac-

tion (2) involves integrals over the spherically symmetric

mass distribution with density ρ(r),

β ≈ 1
12

∫
r4ρ(r) dr, γ ≈ 1

2

∫
r2ρ(r) dr. (10)

For a given mass distribution, the additional “Weyl

mass” γ depends only on the total mass
∫
r2ρ(r) dr en-

closed in a sphere, as we know it from Newtonian gravity.

In contrast, the “effective Newtonian mass” β also de-

pends on the shape of the mass distribution ρ(r). This

contradicts Newtonian gravity and observations (Yoon

2013). In pure (conformal) Weyl gravity this problem

is solved by assuming that the gravitational mass is

dominated by baryons, the protons and neutrons in the

atomic nuclei. Each baryon is assumed to be a spheri-

cally symmetric source of gravity. In the limit of weak

gravity we can add the contributions of all baryons to

total gravity, thus restoring the independence of β of

the density ρ(r) (Mannheim 2016). This might, how-

ever, cause problems in the context of quantum theory

when the wave functions of different baryons overlap.

3. COMBINING WEYL GRAVITY WITH

EINSTEIN-HILBERT GRAVITY

In this paper, we assume the Chamseddine-Connes

action (Chamseddine & Connes 1997; Connes &Marcolli

2008)

SCC = SEH + SW + SSM, (11)

where the new term SSM is the action of the Stan-

dard Model of elementary particles, which describes

the electro-weak and strong interactions and the Higgs

mechanism. (We have omitted terms which do not con-

tribute to the equations of motion; see Connes & Mar-

colli (2008, § 16.1) for details.)
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This action arises from the theory of noncommutative

geometry, which unifies all interactions of the Standard

Model with gravity by ascribing them to curvature on

a noncommutative spacetime with discrete extra dimen-

sions (Connes & Marcolli 2008; Schücker 2000, 2005). In

addition to the expected terms SEH and SSM this action

features SW, thus making Weyl gravity a prediction of

noncommutative geometry.

Since SCC contains SEH, it is not renormalizable, thus

voiding one of the motivations for Weyl gravity. It

is, however, possible to quantize SEH and SCC in the

Schrödinger picture (Gerwinski 2021, 2022). This non-

perturbative approach to quantization removes the need

for renormalization.

The equations of motion arising from both SEH and

SW are nonlinear. Thus it is probably out of range to

find analytic solutions of the equations of motion result-

ing from SCC in a closed form. Using reasonable as-

sumptions we can, however, give a rough estimation of

the combined gravity resulting from SEH+SW, Einstein-

Hilbert-Weyl gravity.

Einstein-Hilbert gravity is of first order in the curva-

ture, and Weyl gravity is of second order. In the case of

very weak gravity, like between the galaxies, we can thus

neglect the contribution of CλµνκC
λµνκ to the action in

relation to that of R and assume unmodified Einstein-

Hilbert gravity. Neglecting the cosmological constant Λ,

the gravity of the intergalactic gas can be described in

good approximation by the Newtonian potential,

Vgas(r) ≈ −GM

r
. (12)

When the curvature is larger, but still small enough

that we can neglect the nonlinearity of Einstein-Hilbert

and Weyl gravity and their coupling, we can, as a rough

approximation, add up their contributions to the poten-

tial,

VCC(r) ≈ −GM

r
− c2β

r
+ 1

2c
2γ r. (13)

The parameter β no longer represents the total mass.

Instead it contributes a small, density-dependent share

to it, which gets overshadowed by the much bigger New-

tonian mass M . Accordingly, in Einstein-Hilbert-Weyl

gravity the value of the global constant β∗ is much

smaller than its value in “pure” Weyl gravity,

c2β ≪ GM, c2β∗ ≪ GM⊙. (14)

On the other hand the parameter γ remains un-

changed and proportional to M via eq. (5). The con-

stant γ∗ is still given by eq. (7).

With these approximations we can describe the stellar

gravity by the potential

V∗(r) ≈ −GM

r
+ 1

2c
2γ∗

M

M⊙
r. (15)

In this potential, both the Newtonian part and the

remaining “local” part of the Weyl gravity do not de-

pend on details of the density profile ρ(r). Both depend

only on the total mass M enclosed in a sphere of radius

R < r. This restores compatibility with observations

without the need to assume each baryon as an individ-

ual source of gravity (Mannheim 2016).

Concerning the global terms involving the constants

γ0 and κ, we cannot assume that they have the same

values on intergalactic scales as they have on galactic

scales. Taking both as parameters, a (manual) fit yields

γ0 ≈ 1.68×10−26 m−1, (16)

κ ≈ 3.82×10−49 m−2 (17)

on intergalactic scales; see section 4 and 5 below.

4. RADIAL SMD PROFILES

In this section, we apply the theory of Weyl gravity,

taken as an addition to Einstein-Hilbert gravity rather

than a replacement, to reproduce the radial profile of the

surface mass density (SMD) in Abell 1689, Abell 1835,

and Abell 2029 from the baryonic matter.

Our starting point for each galaxy cluster is the set

of positions and luminosities of individual galaxies as

determined by the Sloan Digital Sky Survey (SDSS),

data release 16. We take the r′ luminosities as a relative

measure for the masses of the galaxies and fit the scaling

factor such that the brightest cluster galaxy (BCG) has

a baryonic mass of 5×1011 M⊙. For Abell 1689 this

roughtly reproduces the Newtonian SMD profile of the

baryonic masses of the galaxies as determined by Alamo-

Mart́ınez et al. (2013).

Since we need the three-dimensional positions of all

galaxies, but we know only their right ascensions and

declinations, we assign individual random distances to

the galaxies using the following scheme.

• A Cartesian coordinate system is positioned with

the BCG as its origin. The x and y axes corre-

spond to right ascension and declination.

• For each cluster galaxy A except the BCG we ran-

domly search for another cluster galaxy B of com-

parable mass (between 0.75 times the mass and

1.33 times the mass of galaxy A).

• We assume a cylindrical symmetry of the galaxy

cluster around the x axis (which also holds approx-

imately for 1E 0657−558) and assign the y coordi-

nate of galaxy B to the z coordinate of galaxy A.
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• We take the size of the BCG into account by di-

viding it into 200 point-like galaxies whose distri-

bution roughly models an elliptic galaxy.

Using a pseudo-random number generator with known

seed value, we obtain reproducible pseudo-random 3d

distributions of the galaxies. All results of this work

have been checked to be independent, up to negligible

fluctuations, of the random seed value. In contrast, set-

ting all z coordinates to zero does not yield plausible

results.

Next we apply eq. (15) to all galaxies within a ra-

dius of 400 kpc of the BCG, taken as point sources, and

calculate the gravitational acceleration caused by the

baryonic matter, as felt by a test particle. We use the

divergence of the resulting vector field to turn this accel-

eration profile into an SMD profile. To make it compara-

ble to SMD profiles obtained using gravitational lensing,

we have to take into account that the gravitational lens-

ing of Weyl gravity is smaller than the one caused by

Einstein-Hilbert gravity by a factor of 4 (O’Brien et al.

2017).

This factor is only known for the local part of the

Weyl gravity. For the global part we assume the same

factor of 4 for the κ term. (This compensates, probably

by chance, the fitted intergalactical value of κ which is

four times its galactical value.) Concerning the γ0 term,

assuming a factor of 4 again does not lead to plausible

results, so we use a factor of 1. (Other values for this

factor lead to different fits for γ0, but to very similar

SMD profiles.)

Although the total mass of the intergalactic gas is

much bigger than the total mass of the galaxies, its

Einstein-Hilbert gravity is, for all galaxy clusters con-

sidered, just a small fraction of the Weyl gravity of the

galaxies.

Figure 1, 2, and 3 show the radial SMD profiles

calculated this way for Abell 1689, Abell 1835, and

Abell 2029, compared to the SMD profiles obtained

from astronomical observations via gravitational lensing

by Nieuwenhuizen et al. (2021), Alamo-Mart́ınez et al.

(2013), Umetsu et al. (2005), Broadhurst et al. (2005),

Broadhurst et al. (2008) and Ménard et al. (2002).

For Abell 1689 and Abell 1835, the resemblance is ob-

vious. For Abell 2029, the similarity fits in with the un-

certainty of the observational data. A possible reason for

the deviations at large radii is that we are only consid-

ering galaxies within a radius of 400 kpc from the BCG.

Increasing this radius to include more cluster galaxies

also means to include more non-cluster galaxies into the

calculations, which leads to unrealistically high gravity.
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Figure 1. Abell 1689: radial SMD profiles
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Figure 2. Abell 1835: radial SMD profiles
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Figure 3. Abell 2029: radial SMD profiles
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Figure 4. Abell 1689: radial acceleration profiles
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Figure 5. Abell 1835: radial acceleration profiles

10−11

10−10

10−9

10 100 1000

a
[m

s−
2
]

R [kpc]

Vikhlinin et al.
Horne

this work

Figure 6. Abell 2029: radial acceleration profiles

5. RADIAL ACCELERATION PROFILES

Another observational approach to determine the

gravity in galaxy clusters is to assume hydrostatic equi-

librium of the intergalactical gas and to deduce the grav-

itational acceleration from X-ray observations.

Since the effects of Weyl gravity on gravitational lens-

ing and on test particles such as gas atoms are different,

we cannot directly compare our results for SMD profiles

with acceleration profiles obtained via hydrostatic equi-

librium by translating between the acceleration and the

SMD. Instead, we directly extract the radial component

from our calculated gravitational vector field.

Figure 4, 5, and 6 show the radial acceleration pro-

files calculated this way for Abell 1689, Abell 1835, and

Abell 2029, compared to the acceleration profiles ob-

tained from astronomical observations via the hydro-

static equilibrium of the intergalactical gas by Ander-

sson & Madejski (2004), Riemer-Sørensen et al. (2009),

Peng et al. (2009), Ichikawa et al. (2013), Vikhlinin et al.

(2006), and Horne (2006).

The similarities are less striking than when compar-

ing SMD profiles, but the calculated profiles are in the

correct range to match the observed ones. This is a pos-

sible solution to the open problem why the SMD profiles

observed via gravitational lensing do not match the ac-

celeration profiles observed via hydrostatic equilibrium

(Andersson & Madejski 2004; Peng et al. 2009): The

effects of Weyl gravity on gravitational lensing and on

gas atoms are different.

6. 1E 0657−558: 2D SMD PROFILE

The galaxy cluster 1E 0657−558 (Bullet Cluster) is

of particular interest because its SMD profile measured

via gravitational lensing (κ map) does not follow the

SMD profile of the baryonic mass, dominated by the

intergalactic gas clouds. Instead, it appears to follow

the SMD profile of the galaxies alone, without the gas

clouds.

In the context of combined Einstein-Hilbert-Weyl

gravity this is not a surprise. On extragalactic scales,

Weyl gravity dominates over Einstein-Hilbert gravity.

The gas clouds, albeit heavier than the galaxies, are

much less dense than the stars in the galaxies and thus

do not significantly contribute to Weyl gravity.

Our calculations for 1E 0657−558 largely follow those

for Abell 1689, Abell 1835, and Abell 2029. Notable

differences are:

• There are no SDSS data for 1E 0657−558. Instead,

the source of our data for the baryonic mass –

and of the κ map shown in fig. 7 – is Clowe et al.

(2006a), data release 1 (Clowe et al. 2006b).
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Figure 7. 1E 0657−558: two-dimensional κ map according
to Clowe et al. (2006a), data release 1 (Clowe et al. 2006b)
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Figure 8. 1E 0657−558: two-dimensional SMD profile as
calculated in this work

• Instead of considering all galaxies within a radius

of 400 kpc of the BCG, we separate the main clus-

ter and the subcluster by considering all galaxies

within a radius of 160 kpc around the BCG of the

main cluster and within a radius of 120 kpc around

the BCG of the subcluster.

• Since a spherically symmetric mass distribution is

a poor approximation for 1E 0657−558, the global

contributions to Weyl gravity are in fact unknown

and have been omitted in our calculations for

1E 0657−558.

• We neglect the size of the BCG and take it as a

single point-like galaxy instead of dividing it into

point-like subgalaxies.

Figure 8 shows a two-dimensional SMD profile, calcu-

lated for 1E 0657−558 by probing for the SMD at 10000

pseudo-randomly selected points in the vicinity of the

galaxy cluster and interpolating between them by tak-

ing a weighted average of the input data at each grid

point, weighted by the inverse of the distance to the

data point. The result bears indeed some qualitative

resemblance with the κ map observed by Clowe et al.

(2006a) via gravitational lensing as shown in fig. 7.

7. CONCLUSIONS AND OUTLOOK

So far, theories of a modified law of gravity have ex-

plained many aspects of the phenomenon known as dark

matter, but they could not explain the gravity profiles in

galaxy clusters. Density-dependent Weyl gravity, com-

bined with Einstein-Hilbert gravity, closes this gap.

The different effect of Weyl gravity on test particles

and on gravitational lensing is a possible explanation

for the differences between gravity profiles measured via

the hydrostatic equilibrium of the intergalactic gas and

via gravitational lensing in Abell 1689 (Andersson &

Madejski 2004; Peng et al. 2009).

Since other aspects of dark matter such as rotation

curves of galaxies are dominated by the stars, not the

gas, it should be possible to transfer the success of

previous calculations involving Weyl gravity (O’Brien

& Mannheim 2012; Dutta & Islam 2018) to combined

Einstein-Hilbert-Weyl gravity without major modifica-

tions. This makes Einstein-Hilbert-Weyl an interesting

candidate for explaining all aspects of dark matter.

There is, of course, room for further improvement.

• So far, the graviational law of Einstein-Hilbert-

Weyl gravity, eq. (13), is just a rough estimation.

A natural next step would be to derive the pre-
cise form of this potential from the Chamseddine-

Connes action, eq. (11).

• The mass profiles of the galaxies in the clusters,

which are the starting points for all calculations

of gravity profiles in this paper, are also rough

estimations and should be refined.

• The factors between the impact of Weyl gravity

on the gravitational acceleration of a test par-

ticle and on gravitational lensing, currently just

guessed based on results by O’Brien et al. (2017),

should be derived from the Chamseddine-Connes

action, eq. (11), as well.

• This theory allows for a more direct comparison of

its results with observations via gravitational lens-

ing. Instead of calculating one- or two-dimensional
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profiles, we could calculate the Einstein-Hilbert-

Weyl gravity dedicatedly at those positions where

the gravitational lensing has been measured.

If this theory proves correct, one possible application

might be the calculation of the relative distances of the

individual galaxies in a cluster from the two-dimensional

gravity profile of dark matter, measured via gravita-

tional lensing (Ghosh et al. 2023).
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